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SUMMARY 

The Dorodnitsyn finite element method for turbulent boundary layer flow with surface mass transfer is 
extended to include axisymmetric swirling internal boundary layer flow. Turbulence effects are represented by 
the two-layer eddy viscosity model of Cebeci and Smith' with extensions to allow for the effect of swirl. The 
method is applied to duct entry flow and a 10 degree included-angle conical diffuser, and produces results in 
close agreement with experimental measurements with only 1 1  grid points across the boundary layer. The 
introduction of swirl (w,/u, = 0.4) is found to have little effect on the axial skin friction in either a slightly 
favourable or adverse pressure gradient, but does cause an increase in the displacement area for an adverse 
pressure gradient. Surface mass transfer (blowing or suction) causes a substantial reduction (blowing) in axial 
skin friction and an increase in the displacement area. Both suction and the adverse pressure gradient have 
little influence on the circumferential velocity and shear stress components. Consequently in an adverse 
pressure gradient the flow direction adjacent to the wall is expected to approach the circumferential direction 
at some downstream location. 

KEY WORDS Turbulent flow Boundary Layer Flow Swirl Surface Mass Transfer Finite Element Method 

1. INTRODUCTION 

Boundary layer flows have been computed accurately since the 1968 Stanford Conference.2 Two 
dimensional and axisymmetric boundary layer solutions for the velocity components, u and v, are 
typically obtained with x and y (or r )  as independent variables. 

Particularly when computing turbulent boundary layers a large number of points are required 
close to the surface (Figure 1) to accurately represent the velocity profile. A more efficient way of 
representing the velocity profile is to replace the normal co-ordinate, y or r,  with the longitudinal 
or axial velocity component, u, as an independent variable. Consequently grid points at equal 
intervals of u are automatically clustered close to the surface where the solution is changing most 
rapid1 y. 

Both the Dorodnitsyn3 and Crocco boundary layer formulations make use of u as an 
independent variable. However the Dorodnitsyn formulation includes an integration over the 
normal co-ordinate which permits a Galerkin4 interpretation of the formulation and the 
subsequent development of a modified finite element method. 

The use of the longitudinal velocity component, u, as an independent variable has other 
advantages. First a finite domain in the normal direction replaces an infinite domain in the y 
direction. Secondly the growth of the boundary layer in the longitudinal direction is captured 
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Figure 1 .  Turbulent boundary layer velocity profile 

automatically. In physical space it would be necessary to have an irregular grid, with an inherent 
loss of accuracy, or to redefine the grid in the normal direction at discrete intervals downstream. 

The Dorodnitsyn formulation possesses other benefits. In two dimensions the particular nature 
of the integral formulation avoids the specific appearance of the normal velocity component, u, as a 
dependent variable. The solution for the normal velocity can be recovered, subsequently, if 
required. The Dorodnitsyn formulation treats the non-dimensional normal gradient of the velocity 
component, u, as the dependent variable. As a result the skin friction can be computed very 
accurately. 

Originally the Dorodnitsyn formulation was developed to apply the method of integral 
relations5 to boundary layer flows. Subsequently it has been possible to r e i n t e r ~ r e t ~ ' ~  the 
Dorodnitsyn boundary layer formulation as a Galerkin method in both spectral and finite element 
forms. 

The Dorodnitsyn spectral formulation has been applied to incompressible7 and compressible' 
laminar boundary layer flows. The Dorodnitsyn spectral formulation has also been applied to 
inc~rnpress ib le~~ '~  and compressible' ' turbulent boundary layer flows. 

The Dorodnitsyn finite element formulation has been applied to laminar incompressible flow" 
and shown to yield an accurate and very economical algorithm. Using quadratic elements the 
Dorodnitsyn finite element formulation is approximately five times more efficient than a 
conventional finite difference formulation. 

Numerical experiments indicate that the method converges like (Au', Ax) whether linear or 
quadratic elements are used. However of greater importance is the fact that solutions of high 
accuracy are obtained on a relatively coarse grid. 

The Dorodnitsyn finite element formulation has been applied to incompressible turbulent 
boundary layer flow" and shown to be about ten times more efficient than a representative finite 
difference package. A large component of this superior efficiency comes from only requiring about 
a third to a quarter of the number of grid points in the normal direction to accurately represent the 
velocity profile. Developments of the Dorodnitsyn finite element formulation have been applied to 
compressible turbulent boundary layers" and to turbulent boundary layers with mass transfer in 
the normal direction at the ~ a 1 1 . l ~  

Here the Dorodnitsyn finite element formulation is applied to swirling internal boundary layer 
flow for which mass transfer at the wall may also occur. 

The background to this problem is associated with the flow through diffuser-augmented wind 
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turbines which have been shown to be wel l -s~i ted '~ to the generation of electricity from jet-stream 
winds. 1 s , 1 6  To obtain the optimum performance from diffuser-augmented wind turbines it is 
necessary to prevent separation of the flow from the diffuser wall. It is known that the deliberate 
addition of swirl to the flow helps to delay separation and improve pressure re~overy . '~  

The rest of this paper is arranged as follows. In Section 2 the Dorodnitsyn formulation for two- 
dimensional boundary layer flow is described briefly and a modified finite element interpretation is 
provided. The extension of the method to handle internal swirling boundary layer flows is 
described in Section 3. This requires consideration of the circumferential momentum equation, the 
radial pressure gradient and specific treatment of the eddy viscosity concept to represent the effects 
of turbulence on the flow development. 

The present formulation is applied to swirling duct and conical diffuser flows in Section 4 and the 
competing influences of swirl and wall injection on the boundary layer development are assessed. 

2. DORODNITSYN FINITE ELEMENT FORMULATION 

In this section the Dorodnitsyn3 boundary layer formulation is derived for two-dimensional 
incompressible turbulent boundary layer flow. Subsequently a modified Galerkin finite element 
method4 is developed. In the present paper this will be referred to as the Dorodnitsyn finite element 
(DOROD-FEM) method. 

2.1. Dorodnitsyn boundary layer formuiation 

steady two-dimensional incompressible turbulent boundary layer flow can be written as 
Given a characteristic length, L, and velocity U,,  the non-dimensional equations governing 

(1) a u p x  + a v p y  = 0, 

and 
1 

Re  
uci7ujax + vau/ay = U,dU,/dX + --  a { ( i  + v T / V ) a u p y p y ,  ( 2 )  

where u,(x) is the known velocity at the outer edge of the boundary layer. The Reynolds number, 
Re = U,L/v. In equation (2)  vT is the eddy viscosity such that the Reynolds stress, - pu'v' is 
replaced by v,c?u/ay. The equation system, (1) and (2) ,  is parabolic and requires both initial 
conditions. 

4x0, Y )  = Ui(Y) and 4x0, Y )  = V i ( Y h  (3) 
and boundary conditions, 

u(x, 0) = 0, v(x, 0) = u, and u(x, co) = u,(x). (4) 
In equation (4) u, is the (prescribed) normal velocity at the wall. 

new independent variables (t, g) are introduced, 
The Dorodnitsyn boundary layer formulation can be introduced in two stages. In the first stage 

C=x and g =  Reli2u,y, 

and also new velocity components, 

u' = u/u,, u' = Re"'u/u, and v" = u,vr + yu'(du,/d;"f/u,. 
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A weighted combination of equations (5 )  and (6) is formed as 

fk(u’) x equation ( 5 )  + (dfk(u’)/du’) x equation (6) = 0, 

where .fk(u’) is a general weight (test) function whose specific form will be indicated below. The 
weighted combination has the form (after dropping the superscript ’) 

a(ufJ/at  + a(v”fk)/dq = C(due/dr)/ue]dfk/du(l - u2)  + u,df;/dd{ (1 + vT/\j)du/dq)/aq. (8) 
An integration is made with respect to y. This gives 

The weight function, fk, is required to satisfy fk(co) = 0. 
In the second stage of the Dorodnitsyn formulation, new dependent variables are introduced by 

T = 1/0 = du/ay, (10) 

and the variable of integration in equation (9) is changed from q to u. The result is 

where the (prescribed) mass transfer parameter, F = v,/u,. Equation (1 1 )  is the Dorodnitsyn 
formulation for turbulent boundary layer flow. In equation (1 l), < and u are independent variables 
and the unknown normal velocity, v, does not appear explicitly. 

The solution of equation (1 1) requires specification of the form of the approximate solution for 
T and 0 and the weight function, fk(u). Different choices lead to the method of integral  relation^,^ 
the Dorodnitsyn spectral formulation4 and the Dorodnitsyn finite clement formulation (see next 
section). 

2.2. Finite element formulation 

Approximate (trial) solutions for 0 and (1 + vT/v)T are introduced as 
M 

0= 2: { (Nj(u) / ( l  -u))oj(t), 
j =  1 

and 
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where NAu) are one-dimensional shape functions,' either linear or quadratic. The additional 
factor (1 - u) is introduced to give T and 0 the correct physical behaviour at the outer edge of 
the boundary layer. Prescribing separate approximate solutions for T and 0 leads to a more 
concise and economical algorithm. However it prevents equation ( 1  0) from being satisfied except at 
the nodes, z, = 1/0, or in the limit M -+ a. 

It is clear from equation (13) that the approximate solution has been introduced for the group 
of terms, [(l + vT/v)T]. This is a particular application of the group finite element formulation." 
For turbulent boundary layer flow the eddy viscosity is a complicated function of the normal 
coordinate (see Section 3.3). The introduction of the group formulation, equation (13), permits 
i j T  to be evaluated at the nodes only. This makes a substantial contribution to the overall economy, 
and hence the computational efficiency, of the present method. The superior computational 
efficiency is a major feature of the Dorodnitsyn finite element boundary layer method.'**'' 

The weight function is defined by 

f k ( u )  = - u ) N k ( u ) ,  (14) 

and this form satisfies the requirement, f(1) = 0, introduced after equation (9). Equations (12)-(14) 
are substituted into equation (1 1) and produce a modified Galerkin f~rmula t ion .~  Evaluation of 
the various integrals produces the following system of ordinary differential equations for the nodal 
values z, and 0,: 

where 6,, = 1 if k = 1 and 6,, = 0 if k # 1. The algebraic coefficients in equation (1 5 )  are evaluated, 
once and for all, from 

and 

AAkj= j l {%( l  

An efficient implicit marching algorithm is constructed from equation (1 5) as follows. First 
equation ( 1  5) is approximated by 

(17) 
where n denotes the downstream location, cc and p are relaxation parameters, A0J" = 0;" - 0; 
and RHS is the right-hand side of equation (15). A linear system of equations for At?;" is obtained, 
after linearizing RHS"+' about the downstream location, t,,, as 

CCC,,(aAS'j+' + (1 - a)A0Y) = A<(BRHS"+' + (1 - P)RHS"). 

CCCCkjAOY" = P k ,  (18) 
.i 

where 
Ccckj= d c k j  - ~ A ; ' ~ [ ( ~ u , / ~ ~ } / ~ , ] " + ~ E F ~ ~ - - ~ + ~ A A ~ ~ G J I ,  

G; = /( l  + vT/v)z' - { ~ ( v T / v ) / ~ ~ } z / J ,  

and 
Pk = A;'1h? ' ' ' t~~,~F6,~ + [ (d~,/d;'}/u,]"'~CEF~j 

j 

+ U : , ~ ~ A A , A ~  + vT/v)JzJl - ( 1  - cc)xCCkj&?j". 
j j 

In equation (19) the superscript n, p denotes that the term is evaluated at ;', + PA;'. 
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The system of equations, (18), is tridiagonal for linear shape functions and pentadiagonal for 
quadratic shape function. A generalized Thomas algorithm4 is available to take account of the 
varying bandwidth of CCC associated with midside and corner nodes when quadratic shape 
functions are used. 

Equation (1 8) is marched downstream without iteration at  each location, <,. Although 
numerical convergence results' indicate that the scheme is accurate to O(A5) for CI = 1 and /? = 0.6, 
it has produced solutions in good agreement with known exact and experimental results with no 
restriction on the downstream step-size, A<. 

The above algorithm has been applied to laminar," turbulent" and turbulent wall-inje~tion'~ 
boundary layer flows. A feature of the algorithm is that is produces accurate results with typically 
11 points across the boundary layer, but with considerable economy. For representative turbulent 
boundary layer flows the above algorithm (DOROD-FEM) is typically ten times more 
economical lo  than a representative finite difference package, STAN5," while being equally 
accurate. The features that contribute to this superior computational efficiency are discussed by 
Fletcher and Fleet." 

3. SWIRLING INTERNAL BOUNDARY LAYER FLOW 

In this section the equations of motion governing axisymmetric swirling internal boundary layer 
flow are manipulated to give the corresponding Dorodnitsyn equations. Subsequently a modified 
Galerkin finite element interpretation of the Dorodnitsyn equations is developed and the 
turbulence model for swirling boundary layer flow described. 

3.1. Equation of motion and the Dorodnitsyn .formulation 

be written in polar co-ordinates ( x ,  r, (6; u, u,  w) as 
The non-dimensional equations of motion governing swirling internal boundary layer flow can 

a a 
-(ru) + -(ru) = 0, 
ax  dr 

au au a p  1 a 
ax  ar ax  R e a r  

ru- + ru- = - r- + --(r(l + v,/v)&/dr), 

l a  
Re dr ruawlax + rvdw/dr + vw = - - (r( 1 + v,/v)aw/ar). 

In equations (20) to (23) lengths have been non-dimensionalized by L, velocities by U ,  and the 
Reynolds number, Re = U,L/v. The terms Y, and v6 are the axial and circumferential 
eddy viscosities which are introduced to represent the Reynolds shear stresses. In equations (20)- 
(23) the dependent variables, u, u, wand p ,  are functions of x and r only; there is no circumferential 
dependence. 

The equation system (20)-(23), is parabolic and requires corresponding initial conditions, 

~ ( x o ,  r)  = ui(r), u(xo, r )  = ui(r), ~ ( ~ 0 3  r)  = wi(r)> (24) 

and boundary conditions, 
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In equation (25) rw and r, are the values of the radius at the wall and edge of the boundary layer, 
respectively. At the edge of the boundary layer the terms, u,, w, and pe, are connected by the 
Bernoulli equation 

(26) p , / p  + O.SVZ, = p,/p + 0.5~:  + 0.5~:. 

The Dorodnitsyn formulation follows similar steps to those outlined in Section 2.1. First the 
independent variables (x, r) are transformed to (5, y) by defining 

< = x and y = Reli2u,(rW - r). (27) 
New dependent variables are formed by 

u‘ = u/u,. 0’ = Reli2v/u,, w’ = w/u, and q = pe - p. 

With the aid of the weight function, ,fk(d), the following composite equations are created: 

and 
f k ( u ’ )  x equation (20) + (d,fk/du’) x equation (21) = 0, 

fk(U’) x (w’ x equation (20) + equation (23)) + w’(d,f,/du’) x equation (21) = 0. 

(28) 

(29) 
Equations (28) and (29) are integrated across the boundary layer and the variable of integration 
changed from y to u‘. With the restriction that f k ( l )  = 0, the result is (dropping the superscripts ’) 

and 

where 

and 
(32a) 

(32b) 
There is a clear structural similarity between equation (30) and equation (1 1). In equations (30) 

and (3 1 )  T, 0, u, w and q are dependent variables and x and u are independent variables. As before 

u* e< = - (due/dt)/ue + we(dwe/dt)/u,2, 

Q = dq/dt + [(r, - r)@< + dr,/dx] [uzw2/r - w:/re]. 

T = 110 = au/ay. 

The pressure variation across the boundary layer is given by equation (22) manipulated into the 
form 
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and I: is obtained by integrating equation (20) across the boundary layer. The algebraic form 
chosen for the eddy viscosities, v, and vd, is given in Section 3.3. 

Equations (30) and (3 1) are the Dorodnitsyn equations for swirling internal boundary layer flow. 
Once approximate solutions have been introduced for T and 0 etc. and fn(u), chosen, the result is a 
system of ordinary differential equations in 5. 

3.2. Dorodnitsyn finite element formulation 

The formulation is a straightforward extension of that described in Section 2.2. Approximate 
solutions for 0 and (1 + v,/v)T are given by equations (12) and (13) and f k ( u )  is given by 
equation (14). In addition the group formulation2* is used to represent the various groups, 
e.g. (1 + v,./v)/r, that appear in equations (30) and (31). Substitution of the various approximate 
solutions and the weight function into equations (30), (3 1) and (33) gives the following ordinary 
differential equations: 

and 

Some of the coefficients given in equations (34)-(36) are evaluated by equation (16). The rest are 
evaluated from 

Marching algorithms are constructed from equations (34) and (35) by introducing the approxi- 
mation given by equation (17). After linearization of RHS"" about the downstream location, tn, 
the final system of equations (equivalent to equation (18)) can be written 

2 {aCC,j - PA5 3RHS34/3B)AB7jn+ = A[ RHS7l- (1 - ~~)xcC,jA$j., (38) 
j i 

and 
C{aCC,j - PA[ ~RHS,,/~(W$))A(WO)~+' = A t  RHSIJ! - ( 1  - a)CCC,jA(wO)'j. (39) 
j j 

As with equation (18), equations (38) and (39) are each tridiagonal or pentadiagonal systems that 
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can be solved efficiently using a generalized Thomas algorithm4 to march from downstream 
location, {,, to {,+ 1. Since w does not appear in equation (38), i t  is convenient, at each step, to 
solve sequentially equation (38) for 8,, equation (39) for wJ, equation (36) for q ,  and to integrate 
equation (20) across the boundary layer to give u. For the solutions given in Section 4 the values 
x = 1.5, = 1.0 have been used in equations (38) and (39), which produces a stable second-order 
marching scheme. As the solution develops in the c direction the downstream step size, At,  is 
adjusted using the same mechanism as described by Fletcher and Fleet." 

3.3. Turbulence model 

As is clear from equations (21) and (23) eddy viscosities are introduced to represent the axial and 
circumferential Reynolds shear stresses. Here the two-layer representation for the eddy viscosity 
given by Cebeci and Smith' is extended to include the effect of swirl. 

In the outer region a Clauser-type formulation is used: 

(v, /v) ,  = (v,,,/v), = 0~0168ueR,6~/L, (40) 
where 6: is the displacement area based on the total velocity. That is 

and 
q: = u2 + w2, qfe = u: + w:. 

In the inner region the assumption of a balance between the production of turbulent energy and 
dissipation leads to the following expression for the axial eddy viscosity: 

r 
Y, = -- If [(au/ar)2 + (1  /.)(r~(w/r)/~r)2]1'2, 

r w  

where CT = vx/vb  and the mixing length, I,, is given by 

Equation (43) contains the thick axisymmetric boundary layer correction due to Cebeci." In 
equation (42) z,, is the wall value ofthe axial shear stress, the Von Karman constant FC = 0.41 and 
A contains a pressure gradient correction, 

Based on the numerical experimentation with two-dimensional turbulent wall-injection flows,13 
the parameter A contains no wall-injection correction. 

In a manner similar to Koosinlin and Lockwood" it is postulated that, in the inner region 

r 

r w  
\',,, = -g(au/ar)2 + (l/.)(vii(w/r)/ar)2]'12, 

and 

(45) 

(46) 

where z4w is the wall value of the circumferential shear stress. 
It may be noted that the above turbulence model degenerates to a conventional two-layer model 

when swirl is not present. The above model permits anisotropy in the eddy viscosities to appear 
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through the directional wall shear stresses used in the van Driest damping factor. This effectively 
limits the anisotropy to the viscous sublayer. 

4. RESULTS AND DISCUSSION 

The Dorodnitsyn finite element formulation (DOROD-FEM) described in Section 3 has been 
applied to swirling boundary layer flow in circular duct entries and in a 10 degree included-angle 
conical diffuser. For both cases blowing and suction in the normal direction at the wall have also 
been considered. All the results presented in this section have been obtained with ten linear 
elements (i.e. 11 grid points) spanning the boundary layer. 

4.1. Duct entry flow 

Experimental results due to Barbin and Jones23 and Yeh24 are available for the geometry shown 
in Figure 2. The data obtained by Barbin and Jones did not include the effects of swirl and have 
been used here to check the present method for non-swirling axisymmetric flow. As is clear from 
the velocity profiles shown in Figure 3 DOROD-FEM produces solutions in good agreement with 
the experimental results. The Reynolds number for these results is Re = 0.399 x lo6. The co- 
ordinate x in Figure 3 and all subsequent Figures is equivalent to t in Section 3. The co-ordinate 
y in Figure 3 is measured from the wall in the radial direction. 

The experimental data of Yeh24 were obtained in an annulus rather than a duct. However the 
boundary layer development on the inner surface of the outer annulus wall is the same as for a 
duct. Yeh considered both swirling and non-swirling entry flow but only presented velocity 
measurements at two downstream stations corresponding to x/L= 1.50 and 250 in Figure 2.  The 
Reynolds number, based on L and u, at x/L= 1.50, is Re = 0.994 x lo6. A comparison of the axial 
circumferential velocity distributions at x/L= 2.50 is shown in Figure 4. Good agreement between 
the computational (DOROD-FEM) and experimental (YEH) results is indicated. 

For both the Barbin and Jones case and the Yeh case the axial pressure gradient is slightly 
negative, i.e. slightly favourable. The variation of the axial skin friction coefficient corresponding 
to Yeh’s experiments is shown in Figure 5. It can be seen that the inclusion of swirl (at x/L= 1.5, 
w,/u, = 0.4) does not significantly alter the skin friction. However the introduction of blowing at 
the wall ( F  = v,/u,) causes a marked reduction in the skin friction coefficient. The rapid adjustment 
in the skin friction between x/L= 1.50 and 1.60 i s  due to the use of the experimental (non-blowing) 
velocity profiles to start the computation at x/L= 1.50. Consequently the skin friction variation 
shown in Figure 5 indicates the response of the boundary layer to the sudden initiation of blowing 
at x/L= 1.50. The blowing rate is constant at F = 0002 for 1.50 d x/Ld 2.50. 

\ _ _  

I f- 
X ~ O L = I S  xE t i  = 2 s  (YEHI 

x o I L = 1 5  X E  /L :I05 (BARBIN & JONES) 

Figure 2. Duct entry boundary layer flow 



Figure 3. Velocity profiles for duct entry flow 
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Figure 5. Skin friction variation for duct entry flow 
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Figure 6. Displacement area variation for duct entry flow 
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The corresponding variation in axial displacement area is shown in Figure 6. The axial displace- 
ment area is defined by 

6* = J r w  r( 1 - u) dr. 
re 

(47) 

It is expected that the response of the boundary layer thickness to swirl and wall injection will 
be qualitatively similar to that of the axial displacement area. 

It may be noted that the swirl and non-swirl cases have started from the corresponding experi- 
mental velocity distributions, and consequently have different displacement areas at x/L= 1.50. 
As with the axial skin friction behaviour, swirl has relatively little influence on the growth in 
displacement area. However the inclusion of blowing causes a rapid growth in displacement 
area in the downstream direction and, by implication, in the boundary layer thickness. 

Although not shown in Figures 5 and 6 the introduction of suction ( F  = - 0.002) causes an 
increase in skin friction and a decrease in the rate of growth of the displacement area. 

4.2.  Conical d@user f low 

F r a ~ e r ~ ~  has made measurements of the velocity distribution and deduced skin friction and dis- 
placement area behaviour for the flow in a 10 degree included-angle conical diffuser (Figure 7). 
Fraser’s experiments included neither swirl nor wall injection. To investigate the influence of swirl 
it has been necessary to make assumptions about the upstream profile, wi(r), and the boundary 
layer edge variation, we(x), of the circumferential velocity component. The downstream solution 
for the duct entry case has provided the upstream profile, wi(r). The boundary layer edge velocity, 
has been obtained by assuming that angular momentum is conserved and that the inviscid circum- 
ferential velocity is vortex-like, i.e. 

were = ( W J , ) , ~  and we = k/re. (48) 

A consideration of the inviscid circumferential momentum equation (left-hand side of equation (23)  
set equal to zero), indicates that awelax = 0, so that uzt = {due/d{)/ue (see equation (31a)). 

The diffuser section starts at x/L= 1.50 so that up to this point the axial pressure gradient is 
slightly negative. Downstream of x/L= 1.50 the axial pressure gradient is positive (see Figure 8). 
The Reynolds number of Fraser’s experiment and the present computation is Re = 0.386 x lo6 
based on L and u, at x/L= 1.0. 

r, I L  = 0 659 
F X  

I \  

‘ I  
‘ I  ‘\ 1 

Xg I L -  10 x/L = 1 s  x c / L =  300  

START OF CONICAL DIFFUSER 

Figure 7. Conical diffuser geometry 
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Figure 8. Axial velocity distribution at boundary layer edge 
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Figure 9. Axial skin friction variation for conical diffuser 

The axial skin friction variation with axial position is shown in Figure 9. Included in Figure 9 
are the values of skin friction coefficient deduced by Fraser from the experimental velocity dis- 
tributions. It is apparent that good agreement is obtained between the experimental and computed 
results. 

It is of interest that the inclusion of swirl (at x/L= 1.0, w,/u, = 0.4) causes relatively little change 
in the skin friction. For small values of x/L the introduction of swirl causes a slight increase in 
axial skin friction. However, in the adverse pressure gradient regime @/La 1-50) the effect of swirl is 
to eventually cause a reduction in axial skin friction compared with the no-swirl case. This is more 
pronounced when suction is also applied. The data shown in Figure 9 indicate that blowing and 
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suction are both more effective in altering the skin friction behaviour than is the introduction of 
swirl. 

The variation of displacement area with axial position is shown in Figure 10. Good agreement 
with the experimental data of Fraser ~nonswirling flow with no blowing or suction) is indicated 
for small values of x/L. For large values of x / L  the computational results slightly underpredict 
the experimental data. 

Figure 10. Displacement area variation for conical diffuser 

Figure t 1. Velocity distribution comparison for non-swirling flow 
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In contrast to the behaviour in a slightly negative pressure gradient (Figure 6) the present results 
(Figure 10) indicate that the inclusion of swirl causes a noticeable increase in displacement area 
growth. It is surmised that the increased turbulent mixing associated with swirl is not as effectively 
suppressed by the adverse pressure gradient. The introduction of blowing or suction is seen to have 
a marked effect on displacement area growth. 

For the non-swirl case, with no suction or blowing, typical axial velocity distributions are 
compared with the corresponding experimental results of Fraser in Figure 11. Good agreement 
is indicated. The adverse pressure gradient has reduced the axial velocity, particularly close to the 
wall, and has clearly caused a thickening of the boundary layer in the downstream direction. 

The velocity distribution at x/L= 1.35 is plotted on a semilog scale in Figure 12(a) to examine 
the behaviour near to the wall more closely. The co-ordinates u+ and y +  are defined by 

u ' = u ( ~ , , / p ) ~ ~ ~  and y f  = ( T , , / ~ ) ~ ~ ~ ( Y ~  - Y)/v. (49) 
It is clear that the addition of swirl to the flow does not significantly alter the axial velocity profile, 
whereas the introduction of suction causes a substantial change in the velocity profile while still 
retaining an essentially semi-logarithmic behaviour. A similar pattern is apparent for the velocity 
distribution at x/L= 2.57 (Figure 12(b)), however now the introduction of swirl is indicating a 
greater change than for x/L= 1.35 but still as part of a unique relationship between u+ and lny+.  
As at x/L= 1.35 the introduction of suction causes a different relationship to be produced, while 
still retaining the semi-logarithmic character. 

The behaviour of the circumferential velocity distribution at the two downstream locations is 
shown in Figure 13. There is relatively little difference in the form of the velocity distributions 
indicating that the adverse axial pressure gradient has relatively little influence on the circum- 
ferential velocity behaviour. It is also clear that introducing suction has a very small effect. Com- 
pared with the axial velocity distribution shown in Figure 1 1 ,  the circumferential velocity retains 
the 'inviscid' character until much closer to the wall. 

N O - S W I R L  

S W I R L  

NO S U C T I O N  

e(s 

1 I I I I I I I 
0.00 1.00 2 . 0 0  3.00 4 .00  5.00 6.00 7.00 8.00 0' 

L n Y +  

Figure 12(a). Axial velocity distribution at x /L=  1.35 
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Figure 12(b). Axial velocity distribution at x / L =  2.57 

Figure 13. Circumferential velocity distribution for conical diffuser 

The behaviour of the axial shear stress at the two downstream locations is shown in 
Figures 14(a) and 14(b). 

At x/L= 1.35 the axial shear stress demonstrates a monotonic behaviour, rising from zero at 
the edge of the boundary layer to a maximum at the wall. The introduction of swirl causes a slight 
increase in the axial shear stress at all locations in the radial direction. The introduction of suction 
increases the magnitude of the axial shear stress close to the wall without significantly altering 
the distribution of axial shear stress further from the wall. 
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Figure 14(bf. Axial shear stress ~ i s t r i b u t ~ o ~ ,  x/L= 257 

The radial distribution of the axial shear stress at x/L= 2.57 is substantially different, primarily 
due to the influence of the adverse pressure gradient. For the case of no swirl and no suction 
the axial shear stress increases to a maximum close to the wall and then falls sharply as the 
wall is approached. The addition to swirl increases the axial shear stress by a small amount 
everywhere except immediately adjacent to the wall. The addition of suction reduces the peak 
axiaI shear stress and also causes a local increase in the shear stress adjacent to the wall. There 
appears to be relatively little interaction between suction and swirl. 

The circumferential shear stress distribution is shown in Figure 15. In contrast to the situation 
for the axial shear stress, the distribution of the circ~mferentia~ shear stress at the two downstream 
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Figure 15. Circumferential shear stress distribution 

locations is very similar. The implied lack of dependence on the axial pressure gradient was also 
apparent in the circumferential velocity distributions (Figure 13). The circumferential shear stress 
increases rapidly as the wall is approached. The additional influence of suction is to reduce the 
circumferential shear stress close to the wall with a corresponding increase at the wall. 

The relative independence of the circumferential flow behaviour in relation to the axial flow 
behaviour has also been observed for swirling flow through annular conical diffusers.z6 

Since the wall values of the axial and circumferential shear stresses are proportional to the 
normal gradients of the corresponding velocity components, it follows that the direction of the 
resultant shear stress at the wall is the same as the direction of the limiting streamline at the wall. 

Comparing Figures 14(a), 14(b) and 15 indicates that the adverse pressure gradient acts to signi- 
ficantly reduce the axial shear stress at the wall while leaving the circumferential shear stress at 
the wall relatively unaffected, in the absence of suction. This implies that the resultant shear stress, 
and hence the total velocity close to the wall, swings towards the circumferential direction in 
moving downstream. Eventually the axial shear stress will become negative and the resultant shear 
stress will be directed upstream. However this implies that the axial velocity component will be 
negative adjacent to the wall. 

The current form of the Dorodnitsyn formulation, equations (30) and (31), requires that axial 
velocity component, u, is monotonic with y. To extend the present formulation beyond the point 
where u becomes negative would require splitting the boundary layer into an inner layer and an 
outer layer, in each of which u is monotonic with y. This procedure has been used with the tradi- 
tional Dorodnitsyn method’ but is not attempted here. 

5. CONCLUSION 

The Dorodnitsyn finite element formulation has been extended to swirling internal turbulent 
boundary layer flow with blowing or suction in the radial direction at the wall. Computed solutions 
agree well with the experimental measurements of duct entry flows by Barbin and Jonesz3 and 
Yehz4 and with the conical diffuser flow of F ra~e r .~ ’  The inclusion of swirl, (wJuJi = 0.4, has 
relatively little influence on such boundary layer parameters as axial skin friction and displacement 
area when there is a slight negative pressure gradient. By contrast blowing, with v,/u, = 0.002, 
causes a significant reduction in the axial skin friction and a rapid growth in the displacement area. 
For an adverse pressure gradient, as occurs in the diffuser, the addition of swirl has little influence 
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on the axial skin friction but does produce an increase in the rate of growth of displacement area. 
The circumferential velocity and shear stress components are relatively unaffected by the adverse 
pressure gradient; consequently the limiting streamline at the surface becomes parallel to the 
circumferential direction at some downstream location. For an adverse pressure gradient the in- 
fluence of the suction is limited to the region adjacent to the wall. 
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